Hyperbolic Surface-Arc Complements

نویسنده

  • Jens Harlander
چکیده

We show that the fundamental group of a prime alternating surfacearc complement is δ-hyperbolic in case the genus of the surface is greater than zero. AMS Subject classification: 57M25, 57M50, 57M05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Knot Complements without Closed Embedded Totally Geodesic Surfaces

It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally geodesic are given. Roughly speaking, sufficiently ‘complicated’ surfaces can ...

متن کامل

Totally Geodesic Seifert Surfaces in Hyperbolic Knot and Link Complements Ii

We generalize the results of [AS], finding large classes of totally geodesic Seifert surfaces in hyperbolic knot and link complements, each the lift of a rigid 2-orbifold embedded in some hyperbolic 3-orbifold. In addition, we provide a uniqueness theorem and demonstrate that many knots cannot possess totally geodesic Seifert surfaces by giving bounds on the width invariant in the presence of s...

متن کامل

Small Curvature Surfaces in Hyperbolic 3-manifolds

In a paper of Menasco and Reid, it is conjectured that there exist no hyperbolic knots in S3 for which the complement contains a closed embedded totally geodesic surface. In this note, we show that one can get ”as close as possible” to a counter-example. Specifically, we construct a sequence of hyperbolic knots {Kn} with complements containing closed embedded essential surfaces having principal...

متن کامل

Geometric Limits of Knot Complements

We prove that any complete hyperbolic 3–manifold with finitely generated fundamental group, with a single topological end, and which embeds into S is the geometric limit of a sequence of hyperbolic knot complements in S. In particular, we derive the existence of hyperbolic knot complements which contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3–manifold with t...

متن کامل

Fe b 20 09 GEOMETRIC LIMITS OF KNOT COMPLEMENTS

We prove that any complete hyperbolic 3–manifold with finitely generated fundamental group, with a single topological end, and which embeds into S is the geometric limit of a sequence of hyperbolic knot complements in S. In particular, we derive the existence of hyperbolic knot complements which contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3–manifold with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008